UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version Syllabus					Paper		
				G	CE AS	/A LEVEL – C	October	/November 2011	9702	23	
1	(a)	sca	lar ha	s magnitude/size, vector has magnitude/size and direction				B1	[1]		
	(b)					tum, weight or omission b	out stop	at zero)		B2	[2]
	(c)	(i)	horiz	zontal	ly: 7.5	cos 40° / 7.5 s	sin 50° =	5.7(45) / 5.75 <u>not</u> 5	.8N	A1	[1]
		(ii)	verti	cally:	7.5	sin 40° / 7.5 c	os 50° =	4.8(2)N		A1	[1]
	(d)	or T ₁ = T ₂ =	C0 T = 5.7(= 4.8	orrect orrect sin 5 45) (N (N)	labelli resolv 0° + <i>T</i> ₂	ed triangle ng of two forc ing: $T_2\cos 40^\circ$ sin 40° = 7.5 ale diagram)		e arrows and two an s 50°	gles	M1 A1 (B1) (B1) A1 A1	[4]
2	(a)	1.		const	ant vel	ocity / speed				B1	[1]
		2.		either or				se (in velocity/speed (in velocity/speed))	B1	[1]
	(b)	(i)				under graph f e (18 × 0.65) :		•		C1	
			stage total (–1 f	e 2: d dista for mis stage	istance nce = 3 s <i>readir</i> 2, allo	e = (9 × [3.5 – 37.(4) m ng graph) w calculation	0.65]) = of accel			A1	[2]
		(ii)	eithe	er F= a=	= <i>ma</i> = (18 –	0)/(3.5 – 0.65	or 5)	$E_{K} = \frac{1}{2}mv^{2}$ $E_{K} = \frac{1}{2} \times 1250 \times ($	18) ²	C1 C1	
			or	initial <i>F</i> = cl	mome nange	7900 N ntum = 1250 in momentum 18) / 2.85 = 7	× 18 / time t	= ½ × 1250 × (18) ² . aken	/ 25.7 = 7900 N	A1 (C1) (C1) (A1)	[3]
	(c)	(i)	stag		either or or	half distance	as the	as speed is half / less time is the same of reaction time	3	B1	[1]
		(ii)	stag	e 2:		same accele ne distance	eration a	and $s = v^2 / 2a$ or v	² is ½	B1 B1	[2]

C1

A1

[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2011	9702	23	

3 (a) (i) power = work done per unit time / energy transferred per unit time / rate of work done [1] (ii) Young modulus = stress / strain **B1** [1] (b) (i) 1. $E = T / (A \times strain)$ (allow strain = ε) C1 $T = E \times A \times \text{strain} = 2.4 \times 10^{11} \times 1.3 \times 10^{4} \times 0.001$ M1 $= 3.12 \times 10^4 \text{ N}$ [2] Α0 C1 T - W = ma $[3.12 \times 10^4 - 1800 \times 9.81] = 1800a$ C1 $a = 7.52 \text{ ms}^2$ Α1 [3] (ii) 1. $T = 1800 \times 9.81 = 1.8 \times 10^4 \text{ N}$ Α1 [1] C₁ **2.** potential energy gain = mgh $= 1800 \times 9.81 \times 15$ $= 2.7 \times 10^5 J$ **A1** [2] (iii) P = FvC1 $= 1800 \times 9.81 \times 0.55$ C1 input power = $9712 \times (100/30) = 32.4 \times 10^3 \text{W}$ **A1** [3] 4 (a) p.d. = energy transformed from electrical to other forms **B1** unit charge e.m.f. = energy transformed from other forms to electrical [2] **B**1 unit charge (b) (i) sum of e.m.f.s (in a closed circuit) = sum of potential differences **B**1 [1] (ii) $4.4 - 2.1 = I \times (1.8 + 5.5 + 2.3)$ M1 I = 0.24 AΑ1 [2] (iii) arrow (labelled) I shown anticlockwise Α1 [1] (iv) 1. $V = I \times R = 0.24 \times 5.5 = 1.3(2) \text{ V}$ **A1** [1] **2.** $V_A = 4.4 - (I \times 2.3) = 3.8(5) V$ Α1 [1]

3. either $V_B = 2.1 + (I \times 1.8)$ or $V_B = 3.8 - 1.3$

= 2.5(3) V

	Page 4			Mark Scheme: Teachers' version	Syllabus	ous Paper	
				GCE AS/A LEVEL – October/November 2011	9702	23	
5	(a)	to t	ransverse waves have vibrations that are perpendicular / normal o the direction of energy travel ongitudinal waves have vibrations that are parallel				
			_	rection of energy travel		B1	[2]
	(b)	vibi eith or		ns are in a single direction applies to transverse waves normal to direction of wave energy travel	M1		
		or		normal to direction of wave propagation		A1	[2]
	(c)	(i)	1.	amplitude = 2.8 cm		B1	[1]
			2.	phase difference = 135° or 0.75π rad or $3/4\pi$ rad or 2.36 (three sf needed)	6 radians		
				numerical value unit		M1 A1	[2]
		(ii)	amp	olitude = 3.96 cm (4.0 cm)		A1	[1]
6	(a)	(i)	greater deflection greater electric field / force on α -particle			M0 A1	[1]
		(ii)	•	ater deflection ater electric field / force on α -particle		M0 A1	[1]
	(b)	(i)	eith or	 deflections in opposite directions because oppositely charged β less deflection β has smaller charge 		M1 A1 (M1) (A1)	[2]
		(ii)		maller deflection ause larger mass		M1 A1	[2]
		(iii)	βle	ss deflection because higher speed		B1	[1]
	(c)	<i>eith</i> rati	either $F = ma$ and $F = Eq$ or $a = Eq / m$ ratio = either $(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})$ $(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})$				
				$(1.6 \times 10^{-6}) \times 4 \times (1.67 \times 10^{-6})$ or $[2e \times 1 / 2000 \text{ u}] / [e \times 4u]$		C1	
		rati	o = 1	/4000 or 2.5×10^{-4} or 2.7×10^{-4}		A1	[3]